Use our poker hands reference chart until you are 100% certain of hand rankings. Poker hands from strongest to weakest Royal Flush: Five card sequence from 10 to the Ace in the same suit (10,J,Q,K,A). A royal flush is when you have 10-J-Q-K-A, all of the same suit. It is the highest straight.
In poker, the probability of each type of 5-card hand can be computed by calculating the proportion of hands of that type among all possible hands.
The following enumerates the (absolute) frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement. Wild cards are not considered. The probability of drawing a given hand is calculated by dividing the number of ways of drawing the hand by the total number of 5-card hands (the sample space, five-card hands). The odds are defined as the ratio (1/p) - 1 : 1, where p is the probability. Note that the cumulative column contains the probability of being dealt that hand or any of the hands ranked higher than it. (The frequencies given are exact; the probabilities and odds are approximate.)
The nCr function on most scientific calculators can be used to calculate hand frequencies; entering nCr with 52 and 5, for example, yields as above.
Hand | Frequency | Approx. Probability | Approx. Cumulative | Approx. Odds | Mathematical expression of absolute frequency |
---|---|---|---|---|---|
Royal flush | 4 | 0.000154% | 0.000154% | 649,739 : 1 | |
Straight flush (excluding royal flush) | 36 | 0.00139% | 0.00154% | 72,192.33 : 1 | |
Four of a kind | 624 | 0.0240% | 0.0256% | 4,164 : 1 | |
Full house | 3,744 | 0.144% | 0.170% | 693.2 : 1 | |
Flush (excluding royal flush and straight flush) | 5,108 | 0.197% | 0.367% | 507.8 : 1 | |
Straight (excluding royal flush and straight flush) | 10,200 | 0.392% | 0.76% | 253.8 : 1 | |
Three of a kind | 54,912 | 2.11% | 2.87% | 46.3 : 1 | |
Two pair | 123,552 | 4.75% | 7.62% | 20.03 : 1 | |
One pair | 1,098,240 | 42.3% | 49.9% | 1.36 : 1 | |
No pair / High card | 1,302,540 | 50.1% | 100% | .995 : 1 | |
Total | 2,598,960 | 100% | 100% | 1 : 1 |
The royal flush is a case of the straight flush. It can be formed 4 ways (one for each suit), giving it a probability of 0.000154% and odds of 649,739 : 1.
When ace-low straights and ace-low straight flushes are not counted, the probabilities of each are reduced: straights and straight flushes each become 9/10 as common as they otherwise would be. The 4 missed straight flushes become flushes and the 1,020 missed straights become no pair.
Note that since suits have no relative value in poker, two hands can be considered identical if one hand can be transformed into the other by swapping suits. For example, the hand 3♣ 7♣ 8♣ Q♠ A♠ is identical to 3♦ 7♦ 8♦ Q♥ A♥ because replacing all of the clubs in the first hand with diamonds and all of the spades with hearts produces the second hand. So eliminating identical hands that ignore relative suit values, there are only 134,459 distinct hands.
The number of distinct poker hands is even smaller. For example, 3♣ 7♣ 8♣ Q♠ A♠ and 3♦ 7♣ 8♦ Q♥ A♥ are not identical hands when just ignoring suit assignments because one hand has three suits, while the other hand has only two—that difference could affect the relative value of each hand when there are more cards to come. However, even though the hands are not identical from that perspective, they still form equivalent poker hands because each hand is an A-Q-8-7-3 high card hand. There are 7,462 distinct poker hands.
of the binomial coefficients and their interpretation as the number of ways of choosing elements from a given set. See also: sample space and event (probability theory).
This guide is licensed under the GNU Free Documentation License. It uses material from the Wikipedia.
Home > 5 Card Poker probabilities
In Seven-card Stud, players compare five card hands against each other to determine who wins. A player with a Royal Flush has a better hand than a player with a Full House, for example. Below is a list of standard combinations ranked from best to worst.
A straight from a ten to an ace and all five cards of the same suit. In poker suit does not matter and pots are split between equally strong hands. | |
Straight Flush | Any straight with all five cards of the same suit. |
Four of a Kind | Any four cards of the same rank. |
Full House | Any three cards of the same rank together with any two cards of the same rank. |
Flush | Any five cards of the same suit which are not consecutive. |
Straight | Any five consecutive cards of different suits. The ace count as either a high or a low card. |
Three of a Kind | Any three cards of the same rank. |
Two-pair | Any two cards of the same rank together with another two cards of the same rank. |
One-pair | Any two cards of the same rank. |
High-card | Any hand that does not make up any of the above mentioned hands. |
The fact that in low hand all cards are of the same suit or in sequence does not affect its value. Ace is considered as low card.
The following list is from best to worst low hand, so any hand on the list beats any hand below it and loses to any hand above it.
Five High | Five, four, three, two and Ace |
Any five odd cards topped with six. In case of coincidence of high cards, two next high cards should be compared, and etc. | |
Any five odd cards topped with seven. In case of coincidence of high cards, two next high cards should be compared, and etc. | |
Any five odd cards topped with eight. In case of coincidence of high cards, two next high cards should be compared, and etc. |